How can you avoid overfitting?
Answer: By using a lot of data overfitting can be avoided, overfitting happens relatively as you have a small dataset, and you try to learn from it. But if you have a small database and you are forced to come with a model based on that. In such situation, you can use a technique known as cross validation. In this method the dataset splits into two section, testing and training datasets, the testing dataset will only test the model while, in training dataset, the data points will come up with the model.
In this technique, a model is usually given a dataset of a known data on which training (training data set) is run and a dataset of unknown data against which the model is tested. The idea of cross validation is to define a dataset to "test" the model in the training phase.
Learn More :
Machine Learning
- Give a popular application of machine learning that you see on a day-to-day basis?
- What is Genetic Programming?
- In what areas is pattern recognition used?
- What are the advantages of Naive Bayes?
- What is a classifier in machine learning?
- What is the difference between artificial learning and machine learning?
- What is algorithm independent machine learning?
- Explain what is the function of 'Supervised Learning'?
- What is the function of unsupervised learning?
- What is 'Training set' and 'Test set'?
- What is the standard approach to supervised learning?
- What are the three stages to build the hypotheses or model in machine learning?
- What are the different Algorithm techniques in Machine Learning?
- What are the five popular algorithms of Machine Learning?
- What is inductive Machine Learning?
- Why does overfitting happen?
- What is 'Overfitting' in Machine learning?
- Mention the difference between Data Mining and Machine learning?
- What is Machine Learning?
- Give a derivation of for a single example in batch gradient descent? (Gradient Descent For Linear Regression)
- What is the algorithm for implementing gradient descent for linear regression?
- How does gradient descent converge with a fixed step size alpha?
- Why should we adjust the parameter alpha when using gradient descent?
- Why does gradient descent, regardless of the slope's sign, eventually converge to its minimum value?