How would you handle an imbalanced dataset?

How would you handle an imbalanced dataset?



An imbalanced dataset is when you have, for example, a classification test and 90% of the data is in one class. That leads to problems: an accuracy of 90% can be skewed if you have no predictive power on the other category of data! Here are a few tactics to get over the hump:

1- Collect more data to even the imbalances in the dataset.

2- Resample the dataset to correct for imbalances.

3- Try a different algorithm altogether on your dataset.

What's important here is that you have a keen sense for what damage an unbalanced dataset can cause, and how to balance that.


Learn More :