Data science vs machine learning vs AI?
Data Science: Data science is the extraction of relevant insights from data. It uses various techniques from many fields like mathematics, machine learning, computer programming, statistical modeling, data engineering and visualization, pattern recognition and learning, uncertainty modeling, data warehousing, and cloud computing. Data Science does not necessarily involve big data, but the fact that data is scaling up makes big data an important aspect of data science.
Machine Learning: Machine learning is the ability of a computer system to learn from the environment and improve itself from experience without the need for any explicit programming. Machine learning focuses on enabling algorithms to learn from the data provided, gather insights and make predictions on previously unanalyzed data using the information gathered. Machine learning can be performed using multiple approaches. The three basic models of machine learning are supervised, unsupervised and reinforcement learning.
Artificial Intelligence: Artificial intelligence refers to the simulation of a human brain function by machines. This is achieved by creating an artificial neural network that can show human intelligence. The primary human functions that an AI machine performs include logical reasoning, learning and self-correction. Artificial intelligence is a wide field with many applications but it also one of the most complicated technology to work on. Machines inherently are not smart and to make them so, we need a lot of computing power and data to empower them to simulate human thinking.