Error vs variance vs bias?
In statistics and machine learning, the bias-variance tradeoff is the property of a set of predictive models whereby models with a lower bias in parameter estimation have a higher variance of the parameter estimates across samples, and vice versa. The bias-variance dilemma or problem is the conflict in trying to simultaneously minimize these two sources of error that prevent supervised learning algorithms from generalizing beyond their training set: The bias is an error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting). The variance is an error from sensitivity to small fluctuations in the training set. High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting). The bias-variance decomposition is a way of analyzing a learning algorithm's expected generalization error with respect to a particular problem as a sum of threeterms, the bias, variance, and a quantity called the irreducible error, resulting from noise in the problem itself.
Learn More :
- What features would you use to predict the Uber ETA for ride requests?
- How would you evaluate the predictions of an Uber ETA model?
- Describe how you would build a model to predict Uber ETAs after a rider requests a ride.
- Suppose you're working as a data scientist at Facebook. How would you measure the success of private stories on Instagram, where only certain chosen friends can see the story?
- Precision vs Accuracy Vs Recall?
- False negatives vs false positives? When is either one worse than the other?
- Describe your data science process start to finish?
- Data science vs machine learning vs AI?
- How would you find correlation between a categorical variable and a continuous variable?
- How do you treat null/missing values? Name 3 methodologies.
- How can outlier values be treated?
- What is data normalization? Name 2 normalization methodologies.
- What is the role/importance of data cleaning?
- What are success metrics vs tracking metrics?
- What kind of metric would you make to measure success of a program (marketing) and how do you define them?
- Let's say an app was getting a redesign. How do you know if the redesign was successful?
- We noticed a steep decline in users in a certain area of the world, how would you address/asses?
- What are the two methods used for the calibration in Supervised Learning?
- Which method is frequently used to prevent overfitting?
- What is the difference between heuristic for rule learning and heuristics for decision trees?
- What is Perceptron in Machine Learning?
- Explain the two components of Bayesian logic program?
- What are Bayesian Networks (BN) ?
- Why instance based learning algorithm sometimes referred as Lazy learning algorithm?