False negatives vs false positives? When is either one worse than the other?
False positive: A false positive error, or in short a false positive, commonly called a ""false alarm"", is a result that indicates a given condition exists, when it does not. For example, in the case of ""The Boy Who Cried Wolf"", the condition tested for was ""is there a wolf near the herd?""; the shepherd at first wrongly indicated there was one, by calling ""Wolf, wolf!"" A false positive error is a type I error where the test is checking a single condition, and wrongly gives an affirmative (positive) decision. However it is important to distinguish between the type 1 error rate and the probability of a positive result being false. The latter is known as the false positive risk (see Ambiguity in the definition of false positive rate, below).
False negative: A false negative error, or in short a false negative, is a test result that indicates that a condition does not hold, while in fact it does. In other words, erroneously, no effect has been inferred. An example for a false negative is a test indicating that a woman is not pregnant whereas she is actually pregnant. Another example is a truly guilty prisoner who is acquitted of a crime. The condition ""the prisoner is guilty"" holds (the prisoner is indeed guilty). But the test (a trial in a court of law) failed to realize this condition, and wrongly decided that the prisoner was not guilty, falsely concluding a negative about the condition. It depends, must answer why it depends.
Learn More :
- What features would you use to predict the Uber ETA for ride requests?
- How would you evaluate the predictions of an Uber ETA model?
- Describe how you would build a model to predict Uber ETAs after a rider requests a ride.
- Suppose you're working as a data scientist at Facebook. How would you measure the success of private stories on Instagram, where only certain chosen friends can see the story?
- Precision vs Accuracy Vs Recall?
- Error vs variance vs bias?
- Describe your data science process start to finish?
- Data science vs machine learning vs AI?
- How would you find correlation between a categorical variable and a continuous variable?
- How do you treat null/missing values? Name 3 methodologies.
- How can outlier values be treated?
- What is data normalization? Name 2 normalization methodologies.
- What is the role/importance of data cleaning?
- What are success metrics vs tracking metrics?
- What kind of metric would you make to measure success of a program (marketing) and how do you define them?
- Let's say an app was getting a redesign. How do you know if the redesign was successful?
- We noticed a steep decline in users in a certain area of the world, how would you address/asses?
- What are the two methods used for the calibration in Supervised Learning?
- Which method is frequently used to prevent overfitting?
- What is the difference between heuristic for rule learning and heuristics for decision trees?
- What is Perceptron in Machine Learning?
- Explain the two components of Bayesian logic program?
- What are Bayesian Networks (BN) ?
- Why instance based learning algorithm sometimes referred as Lazy learning algorithm?